欢迎来到飞鸟慕鱼博客,开始您的技术之旅!
当前位置: 首页知识笔记正文

视觉slam十四讲 ppt,视觉slam优缺点

终极管理员 知识笔记 80阅读

文章目录CH3-8证明旋转四元数的虚部是零实部和指数映射CH4-2 SE(3)在CH4上李群和CH4-1so (3)在李代数李代数导出指数映射CH4-3在对极几何上本质矩阵奇异值分解矩阵内积和迹CH3-8证明旋转四元数的虚部是零实部和罗德里格斯公式结果之前已经导出:v' p,p,p,p,p,p,p, p * PVP {-1} v' PVP,其中v [0,v] v [0,v}] p [cos 2,sin 2 u] p [\ cos \ frac {\ Theta} {2},\ sin \ frac { \ Theta } { 2 } \ vec { u }]p[cos 2,sin2 u]代入上式v' PVP。

∗ [ cos ⁡ θ 2 , sin ⁡ θ 2 u ⃗ ] [ 0 , v ⃗ ] [ cos ⁡ θ 2 , − sin ⁡ θ 2 u ⃗ ] [ 0 − sin ⁡ θ 2 u ⃗ ⋅ v ⃗ , cos ⁡ θ 2 v ⃗ 0 sin ⁡ θ 2 u ⃗ × v ⃗ ] [ cos ⁡ θ 2 , − sin ⁡ θ 2 u ⃗ ] [ − sin ⁡ θ 2 u ⃗ ⋅ v ⃗ , cos ⁡ θ 2 v ⃗ sin ⁡ θ 2 u ⃗ × v ⃗ ] [ cos ⁡ θ 2 , − sin ⁡ θ 2 u ⃗ ] (3-8-1) \begin{aligned} v&pvp^* \\ &[\cos\frac{\theta}{2},\sin\frac{\theta}{2}\vec{u}][0,\vec{v}][\cos\frac{\theta}{2},-\sin\frac{\theta}{2}\vec{u}] \\ &[0-\sin\frac{\theta}{2}\vec{u}\cdot\vec{v},\cos\frac{\theta}{2}\vec{v}0\sin\frac{\theta}{2}\vec{u}\times\vec{v}][\cos\frac{\theta}{2},-\sin\frac{\theta}{2}\vec{u}] \\ &[-\sin\frac{\theta}{2}\vec{u}\cdot\vec{v},\cos\frac{\theta}{2}\vec{v}\sin\frac{\theta}{2}\vec{u}\times\vec{v}][\cos\frac{\theta}{2},-\sin\frac{\theta}{2}\vec{u}] \end{aligned} \tag{3-8-1} v′​pvp∗[cos2θ​,sin2θ​u ][0,v ][cos2θ​,−sin2θ​u ][0−sin2θ​u ⋅v ,cos2θ​v 0sin2θ​u ×v ][cos2θ​,−sin2θ​u ][−sin2θ​u ⋅v ,cos2θ​v sin2θ​u ×v ][cos2θ​,−sin2θ​u ]​(3-8-1)

分别计算实部和虚部

R e − sin ⁡ θ 2 cos ⁡ θ 2 u ⃗ ⋅ v ⃗ ( cos ⁡ θ 2 v ⃗ sin ⁡ θ 2 u ⃗ × v ⃗ ) ⋅ sin ⁡ θ 2 u ⃗ − sin ⁡ θ 2 cos ⁡ θ 2 u ⃗ ⋅ v ⃗ cos ⁡ θ 2 sin ⁡ θ 2 u ⃗ ⋅ v ⃗ sin ⁡ θ 2 ( u ⃗ × v ⃗ ) ⋅ u ⃗ 0 0 0 (3-8-2) \begin{aligned} \mathrm{Re}&-\sin\frac{\theta}{2}\cos\frac{\theta}{2}\vec{u}\cdot\vec{v}(\cos\frac{\theta}{2}\vec{v}\sin\frac{\theta}{2}\vec{u}\times\vec{v})\cdot\sin\frac{\theta}{2}\vec{u}\\ &-\sin\frac{\theta}{2}\cos\frac{\theta}{2}\vec{u}\cdot\vec{v}\cos\frac{\theta}{2}\sin\frac{\theta}{2}\vec{u}\cdot\vec{v}\sin\frac{\theta}{2}(\vec{u}\times\vec{v})\cdot\vec{u}\\ &00 \\ &0 \end{aligned} \tag{3-8-2} Re​−sin2θ​cos2θ​u ⋅v (cos2θ​v sin2θ​u ×v )⋅sin2θ​u −sin2θ​cos2θ​u ⋅v cos2θ​sin2θ​u ⋅v sin2θ​(u ×v )⋅u 000​(3-8-2)

I m ( − sin ⁡ θ 2 u ⃗ ⋅ v ⃗ ) ⋅ ( − sin ⁡ θ 2 u ⃗ ) ( cos ⁡ θ 2 v ⃗ sin ⁡ θ 2 u ⃗ × v ⃗ ) cos ⁡ θ 2 ( cos ⁡ θ 2 v ⃗ sin ⁡ θ 2 u ⃗ × v ⃗ ) × ( − sin ⁡ θ 2 u ⃗ ) (3-8-3) \begin{aligned} \mathrm{Im}&(-\sin\frac{\theta}{2}\vec{u}\cdot\vec{v})\cdot(-\sin\frac{\theta}{2}\vec{u})(\cos\frac{\theta}{2}\vec{v}\sin\frac{\theta}{2}\vec{u}\times\vec{v})\cos\frac{\theta}{2} \\ &(\cos\frac{\theta}{2}\vec{v}\sin\frac{\theta}{2}\vec{u}\times\vec{v})\times(-\sin\frac{\theta}{2}\vec{u}) \end{aligned} \tag{3-8-3} Im​(−sin2θ​u ⋅v )⋅(−sin2θ​u )(cos2θ​v sin2θ​u ×v )cos2θ​(cos2θ​v sin2θ​u ×v )×(−sin2θ​u )​(3-8-3)

我们希望将其写成矩阵乘法形式。

先证明公式 a ⃗ × ( b ⃗ × c ⃗ ) ( a ⃗ ⋅ c ⃗ ) ⋅ b ⃗ − ( a ⃗ ⋅ b ⃗ ) ⋅ c ⃗ \vec{a}\times(\vec{b}\times\vec{c})(\vec{a}\cdot\vec{c})\cdot\vec{b}-(\vec{a}\cdot\vec{b})\cdot\vec{c} a ×(b ×c )(a ⋅c )⋅b −(a ⋅b )⋅c 。

证明

a ⃗ × b ⃗ a ∧ b [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] [ b 1 b 2 b 3 ] △ T a b (3-8-4) \begin{aligned} \vec{a}\times\vec{b}&\boldsymbol{a}^{\wedge}\boldsymbol{b} \\ &\left[\begin{array}{c} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{array}\right]\left[\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array}\right]\stackrel{\bigtriangleup}\boldsymbol{T}_a\boldsymbol{b} \end{aligned} \tag{3-8-4} a ×b ​a∧b ​0a3​−a2​​−a3​0a1​​a2​−a1​0​ ​ ​b1​b2​b3​​ ​△Ta​b​(3-8-4)

那么矩阵乘法满足结合律

a ⃗ × ( b ⃗ × c ⃗ ) ( T a T b ) c T a T b c \vec{a}\times(\vec{b}\times\vec{c})(\boldsymbol{T}_a\boldsymbol{T}_b)\boldsymbol{c}\boldsymbol{T}_a\boldsymbol{T}_b\boldsymbol{c} a ×(b ×c )(Ta​Tb​)cTa​Tb​c

T a T b [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] [ 0 − b 3 b 2 b 3 0 − b 1 − b 2 b 1 0 ] [ − a 3 b 3 − a 2 b 2 a 2 b 1 a 3 b 1 a 1 b 2 − a 3 b 3 − a 1 b 1 a 3 b 2 a 1 b 3 a 2 b 3 − a 2 b 2 − a 1 b 1 ] − ( a ⃗ ⋅ b ⃗ ) I b a T \begin{aligned} \boldsymbol{T}_a\boldsymbol{T}_b&\left[\begin{array}{c} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{array}\right]\left[\begin{array}{c} 0 & -b_3 & b_2 \\ b_3 & 0 & -b_1 \\ -b_2 & b_1 & 0 \end{array}\right] \\ &\left[\begin{array}{c} -a_3b_3-a_2b_2 & a_2b_1 & a_3b_1 \\ a_1b_2 & -a_3b_3-a_1b_1 & a_3b_2 \\ a_1b_3 & a_2b_3 & -a_2b_2 -a_1b_1 \end{array}\right]\\ &-(\vec{a}\cdot\vec{b})\boldsymbol{I}\boldsymbol{b}\boldsymbol{a}^{\mathrm{T}} \end{aligned} Ta​Tb​​ ​0a3​−a2​​−a3​0a1​​a2​−a1​0​ ​ ​0b3​−b2​​−b3​0b1​​b2​−b1​0​ ​ ​−a3​b3​−a2​b2​a1​b2​a1​b3​​a2​b1​−a3​b3​−a1​b1​a2​b3​​a3​b1​a3​b2​−a2​b2​−a1​b1​​ ​−(a ⋅b )IbaT​

则用到了矩阵结合律

a ⃗ × ( b ⃗ × c ⃗ ) T a T b c ( − ( a ⃗ ⋅ b ⃗ ) I b a T ) c − ( a ⃗ ⋅ b ⃗ ) c b ( a T c ) − ( a ⃗ ⋅ b ⃗ ) c ( a ⃗ ⋅ c ⃗ ) b (3-8-5) \begin{aligned} \vec{a}\times(\vec{b}\times\vec{c})\boldsymbol{T}_a\boldsymbol{T}_b\boldsymbol{c}&(-(\vec{a}\cdot\vec{b})\boldsymbol{I}\boldsymbol{b}\boldsymbol{a}^{\mathrm{T}})\boldsymbol{c} \\ &-(\vec{a}\cdot\vec{b})\boldsymbol{c}\boldsymbol{b}(\boldsymbol{a}^{\mathrm{T}}\boldsymbol{c}) \\ &-(\vec{a}\cdot\vec{b})\boldsymbol{c}(\vec{a}\cdot\vec{c})\boldsymbol{b} \end{aligned} \tag{3-8-5} a ×(b ×c )Ta​Tb​c​(−(a ⋅b )IbaT)c−(a ⋅b )cb(aTc)−(a ⋅b )c(a ⋅c )b​(3-8-5)

同理可证

( a ⃗ × b ⃗ ) × c ⃗ ( a ⃗ ⋅ c ⃗ ) b − ( b ⃗ ⋅ c ⃗ ) a (3-8-6) (\vec{a}\times\vec{b})\times\vec{c}(\vec{a}\cdot\vec{c})\boldsymbol{b}-(\vec{b}\cdot\vec{c})\boldsymbol{a} \tag{3-8-6} (a ×b )×c (a ⋅c )b−(b ⋅c )a(3-8-6)

证毕。

下面继续推导式3-8-3

I m sin ⁡ 2 θ 2 u ⃗ ⋅ v ⃗ ⋅ u ⃗ cos ⁡ 2 θ 2 v ⃗ sin ⁡ θ 2 cos ⁡ θ 2 u ⃗ × v ⃗ − sin ⁡ θ 2 cos ⁡ θ 2 v ⃗ × u ⃗ − sin ⁡ 2 θ 2 u ⃗ × v ⃗ × u ⃗ sin ⁡ 2 θ 2 ( u ⃗ ⋅ v ⃗ ) ⋅ u ⃗ cos ⁡ 2 θ 2 v ⃗ sin ⁡ θ u ⃗ × v ⃗ − sin ⁡ 2 θ 2 [ ( u ⃗ ⋅ u ⃗ ) v − ( v ⃗ ⋅ u ⃗ ) u ] sin ⁡ 2 θ 2 ( u ⃗ ⋅ v ⃗ ) ⋅ u ‾ cos ⁡ 2 θ 2 v sin ⁡ θ u ⃗ × v ⃗ − sin ⁡ 2 θ 2 v sin ⁡ 2 θ 2 ( v ⃗ ⋅ u ⃗ ) u ‾ cos ⁡ θ v 2 sin ⁡ 2 θ 2 ( v ⃗ ⋅ u ⃗ ) u sin ⁡ θ u ⃗ × v ⃗ cos ⁡ θ v ( 1 − cos ⁡ θ ) ( v ⃗ ⋅ u ⃗ ) u sin ⁡ θ u ⃗ × v ⃗ (3-8-7) \begin{aligned} \mathrm{Im}&\sin^2\frac{\theta}{2}\vec{u}\cdot\vec{v}\cdot\vec{u}\cos^2\frac{\theta}{2}\vec{v}\sin\frac{\theta}{2}\cos\frac{\theta}{2}\vec{u}\times\vec{v}-\sin\frac{\theta}{2}\cos\frac{\theta}{2}\vec{v}\times\vec{u}-\sin^2\frac{\theta}{2}\vec{u}\times\vec{v}\times\vec{u} \\ &\sin^2\frac{\theta}{2}(\vec{u}\cdot\vec{v})\cdot\vec{u}\cos^2\frac{\theta}{2}\vec{v}\sin\theta\vec{u}\times\vec{v}-\sin^2\frac{\theta}{2}[(\vec{u}\cdot\vec{u})\boldsymbol{v}-(\vec{v}\cdot\vec{u})\boldsymbol{u}] \\ &\underline{\sin^2\frac{\theta}{2}(\vec{u}\cdot\vec{v})\cdot\boldsymbol{u}}\cos^2\frac{\theta}{2}\boldsymbol{v}\sin\theta\vec{u}\times\vec{v}-\sin^2\frac{\theta}{2}\boldsymbol{v}\underline{\sin^2\frac{\theta}{2}(\vec{v}\cdot\vec{u})\boldsymbol{u}} \\ &\cos\theta\boldsymbol{v}2\sin^2\frac{\theta}{2}(\vec{v}\cdot\vec{u})\boldsymbol{u}\sin\theta\vec{u}\times\vec{v} \\ &\cos\theta\boldsymbol{v}(1-\cos\theta)(\vec{v}\cdot\vec{u})\boldsymbol{u}\sin\theta\vec{u}\times\vec{v} \end{aligned} \tag{3-8-7} Im​sin22θ​u ⋅v ⋅u cos22θ​v sin2θ​cos2θ​u ×v −sin2θ​cos2θ​v ×u −sin22θ​u ×v ×u sin22θ​(u ⋅v )⋅u cos22θ​v sinθu ×v −sin22θ​[(u ⋅u )v−(v ⋅u )u]sin22θ​(u ⋅v )⋅u​cos22θ​vsinθu ×v −sin22θ​vsin22θ​(v ⋅u )u​cosθv2sin22θ​(v ⋅u )usinθu ×v cosθv(1−cosθ)(v ⋅u )usinθu ×v ​(3-8-7)

注意 u ⃗ \vec{u} u 是单位向量故 u ⃗ ⋅ u ⃗ 1 \vec{u}\cdot\vec{u}1 u ⋅u 1。

也就是拉格朗日公式结果。证毕。

CH4 李群与李代数 CH4-1 SO(3) 上的指数映射

将指数函数 e x e^x ex 在 x 0 x0 x0 处泰勒展开即

e x 1 x 1 2 ! x 2 1 3 ! x 3 . . . 1 n ! x n ∑ n 0 ∞ x n n ! (4-1-1) \begin{aligned} e^x & 1x\frac{1}{2!}x^2\frac{1}{3!}x^3...\frac{1}{n!}x^n \\ &\sum_{n0}^{\infty}\frac{x^n}{n!} \end{aligned} \tag{4-1-1} ex​1x2!1​x23!1​x3...n!1​xnn0∑∞​n!xn​​(4-1-1)

将矩阵 A \boldsymbol{A} A 代入上式 则

e A ∑ n 0 ∞ A n n ! e^{\boldsymbol{A}}\sum_{n0}^{\infty}\frac{\boldsymbol{A}^n}{n!} eAn0∑∞​n!An​

同样的也有

e ϕ ∧ ∑ n 0 ∞ ( ϕ ∧ ) n n ! (4-1-2) e^{\boldsymbol{\phi}^{\wedge}}\sum_{n0}^{\infty}\frac{(\boldsymbol{\phi}^{\wedge})^n}{n!} \tag{4-1-2} eϕ∧n0∑∞​n!(ϕ∧)n​(4-1-2)

令 ϕ θ a \boldsymbol{\phi}\theta\boldsymbol{a} ϕθa θ \theta θ为模长 a \boldsymbol{a} a 为单位方向向量。则上式可写为

e ( θ a ) ∧ ∑ n 0 ∞ ( θ a ∧ ) n n ! e^{\boldsymbol({\theta\boldsymbol{a}})^{\wedge}}\sum_{n0}^{\infty}\frac{(\theta\boldsymbol{a}^{\wedge})^n}{n!} e(θa)∧n0∑∞​n!(θa∧)n​

我们知道

a ∧ [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] \boldsymbol{a}^{\wedge}\left[\begin{array}{c} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{array}\right] a∧ ​0a3​−a2​​−a3​0a1​​a2​−a1​0​ ​

a ∧ a ∧ [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] [ − a 3 2 − a 2 2 a 1 a 2 a 1 a 3 a 1 a 2 − a 3 2 − a 1 2 a 2 a 3 a 1 a 3 a 2 a 3 − a 2 2 − a 1 2 ] (4-1-3) \begin{aligned} \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}&\left[\begin{array}{c} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{array}\right]\left[\begin{array}{c} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{array}\right] \\ &\left[\begin{array}{c} -a_3^2-a_2^2 & a_1a_2 & a_1a_3 \\ a_1a_2 & -a_3^2-a_1^2 & a_2a_3 \\ a_1a_3 & a_2a_3 & -a_2^2-a_1^2 \end{array}\right] \end{aligned} \tag{4-1-3} a∧a∧​ ​0a3​−a2​​−a3​0a1​​a2​−a1​0​ ​ ​0a3​−a2​​−a3​0a1​​a2​−a1​0​ ​ ​−a32​−a22​a1​a2​a1​a3​​a1​a2​−a32​−a12​a2​a3​​a1​a3​a2​a3​−a22​−a12​​ ​​(4-1-3)

因为 a \boldsymbol{a} a 是单位向量则有 a 1 2 a 2 2 a 3 2 1 a_1^2a_2^2a_3^21 a12​a22​a32​1可得

a a T − I [ a 1 a 2 a 3 ] [ a 1 a 2 a 3 ] [ a 1 2 a 1 a 2 a 1 a 3 a 2 a 1 a 2 2 a 2 a 3 a 1 a 3 a 2 a 3 a 3 2 ] − [ 1 0 0 0 1 0 0 0 1 ] [ − a 3 2 − a 2 2 a 1 a 2 a 1 a 3 a 1 a 2 − a 3 2 − a 1 2 a 2 a 3 a 1 a 3 a 2 a 3 − a 2 2 − a 1 2 ] a ∧ a ∧ (4-1-4) \begin{aligned} \boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}-\boldsymbol{I}\left[\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array}\right]\left[\begin{array}{ccc} a_1 & a_2 & a_3 \end{array}\right] &\left[\begin{array}{c} a_1^2 & a_1a_2 & a_1a_3 \\ a_2a_1 & a_2^2 & a_2a_3 \\ a_1a_3 & a_2a_3 & a_3^2 \end{array}\right]- \left[\begin{array}{c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \\ &\left[\begin{array}{c} -a_3^2-a_2^2 & a_1a_2 & a_1a_3 \\ a_1a_2 & -a_3^2-a_1^2 & a_2a_3 \\ a_1a_3 & a_2a_3 & -a_2^2-a_1^2 \end{array}\right] \\ &\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge} \end{aligned} \tag{4-1-4} aaT−I ​a1​a2​a3​​ ​[a1​​a2​​a3​​]​ ​a12​a2​a1​a1​a3​​a1​a2​a22​a2​a3​​a1​a3​a2​a3​a32​​ ​− ​100​010​001​ ​ ​−a32​−a22​a1​a2​a1​a3​​a1​a2​−a32​−a12​a2​a3​​a1​a3​a2​a3​−a22​−a12​​ ​a∧a∧​(4-1-4)

a ∧ a ∧ a ∧ [ − a 3 2 − a 2 2 a 1 a 2 a 1 a 3 a 1 a 2 − a 3 2 − a 1 2 a 2 a 3 a 1 a 3 a 2 a 3 − a 2 2 − a 1 2 ] [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] [ 0 a 2 2 a 3 a 3 3 a 1 2 a 3 − a 2 3 − a 2 a 3 2 − a 1 a 2 2 − a 1 2 a 3 − a 3 3 − a 1 2 a 3 0 a 1 a 2 2 a 1 3 a 1 a 3 2 a 2 a 3 2 a 1 2 a 2 a 2 3 − a 1 a 3 2 − a 1 3 − a 1 a 2 2 0 ] \begin{aligned} \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}&\left[\begin{array}{c} -a_3^2-a_2^2 & a_1a_2 & a_1a_3 \\ a_1a_2 & -a_3^2-a_1^2 & a_2a_3 \\ a_1a_3 & a_2a_3 & -a_2^2-a_1^2 \end{array}\right]\left[\begin{array}{c} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{array}\right] \\ &\left[\begin{array}{c} 0 & a_2^2a_3a_3^3a_1^2a_3 & -a_2^3-a_2a_3^2-a_1a_2^2 \\ -a_1^2a_3-a_3^3-a_1^2a_3 & 0 & a_1a_2^2a_1^3a_1a_3^2 \\ a_2a_3^2a_1^2a_2a_2^3 & -a_1a_3^2-a_1^3-a_1a_2^2 & 0 \end{array}\right] \\ \end{aligned} a∧a∧a∧​ ​−a32​−a22​a1​a2​a1​a3​​a1​a2​−a32​−a12​a2​a3​​a1​a3​a2​a3​−a22​−a12​​ ​ ​0a3​−a2​​−a3​0a1​​a2​−a1​0​ ​ ​0−a12​a3​−a33​−a12​a3​a2​a32​a12​a2​a23​​a22​a3​a33​a12​a3​0−a1​a32​−a13​−a1​a22​​−a23​−a2​a32​−a1​a22​a1​a22​a13​a1​a32​0​ ​​

又 a 1 2 a 2 2 a 3 2 1 a_1^2a_2^2a_3^21 a12​a22​a32​1上式写为

a ∧ a ∧ a ∧ [ 0 a 3 − a 2 − a 3 0 a 1 a 2 − a 1 0 ] − a ∧ (4-1-5) \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}\left[\begin{array}{c} 0 & a_3 & -a_2 \\ -a_3 & 0 & a_1 \\ a_2 & -a_1 & 0 \end{array}\right]-\boldsymbol{a}^{\wedge} \tag{4-1-5} a∧a∧a∧ ​0−a3​a2​​a3​0−a1​​−a2​a1​0​ ​−a∧(4-1-5)

对式4-1-2

e ϕ ∧ e ( θ a ) ∧ ∑ n 0 ∞ ( θ a ∧ ) n n ! I θ a ∧ 1 2 ! θ 2 a ∧ a ∧ 1 3 ! θ 3 a ∧ a ∧ a ∧ 1 4 ! θ 4 a ∧ a ∧ a ∧ a ∧ . . . ( a a T − a ∧ a ∧ ) θ a ∧ 1 2 ! θ 2 a ∧ a ∧ − 1 3 ! θ 3 a ∧ − 1 4 ! θ 4 a ∧ a ∧ . . . a a T ( θ − 1 3 ! θ 3 1 5 ! θ 5 . . . ) a ∧ ( − 1 1 2 ! θ 2 − 1 4 ! θ 4 . . . ) a ∧ a ∧ ( a ∧ a ∧ I ) sin ⁡ θ a ∧ − cos ⁡ θ ( a ∧ a ∧ ) ( 1 − cos ⁡ θ ) a ∧ a ∧ I sin ⁡ θ a ∧ ( 1 − cos ⁡ θ ) ( a a T − I ) I sin ⁡ θ a ∧ a a T − I − cos ⁡ θ a a T cos ⁡ θ I I sin ⁡ θ a ∧ cos ⁡ θ I ( 1 − cos ⁡ θ ) a a T sin ⁡ θ a ∧ \begin{aligned} e^{\boldsymbol{\phi}^{\wedge}}e^{\boldsymbol({\theta\boldsymbol{a}})^{\wedge}}&\sum_{n0}^{\infty}\frac{(\theta\boldsymbol{a}^{\wedge})^n}{n!} \\ &\boldsymbol{I}\theta\boldsymbol{a}^{\wedge}\frac{1}{2!}\theta^2 \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}\frac{1}{3!}\theta^3 \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}\frac{1}{4!}\theta^4 \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}...\\ &(\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}-\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge})\theta\boldsymbol{a}^{\wedge}\frac{1}{2!}\theta^2 \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}-\frac{1}{3!}\theta^3 \boldsymbol{a}^{\wedge}-\frac{1}{4!}\theta^4 \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}...\\ &\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}(\theta-\frac{1}{3!}\theta^3\frac{1}{5!}\theta^5...)\boldsymbol{a}^{\wedge}(-1\frac{1}{2!}\theta^2-\frac{1}{4!}\theta^4...)\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}\\ &(\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}\boldsymbol{I})\sin\theta \boldsymbol{a}^{\wedge}-\cos\theta(\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge})\\ &(1-\cos\theta)\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}\boldsymbol{I}\sin\theta \boldsymbol{a}^{\wedge} \\ &(1-\cos\theta)(\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}-\boldsymbol{I})\boldsymbol{I}\sin\theta \boldsymbol{a}^{\wedge}\\ &\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}-\boldsymbol{I}-\cos\theta\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}\cos\theta\boldsymbol{I}\boldsymbol{I}\sin\theta \boldsymbol{a}^{\wedge}\\ &\cos\theta\boldsymbol{I}(1-\cos\theta)\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}\sin\theta \boldsymbol{a}^{\wedge} \end{aligned} eϕ∧e(θa)∧​n0∑∞​n!(θa∧)n​Iθa∧2!1​θ2a∧a∧3!1​θ3a∧a∧a∧4!1​θ4a∧a∧a∧a∧...(aaT−a∧a∧)θa∧2!1​θ2a∧a∧−3!1​θ3a∧−4!1​θ4a∧a∧...aaT(θ−3!1​θ35!1​θ5...)a∧(−12!1​θ2−4!1​θ4...)a∧a∧(a∧a∧I)sinθa∧−cosθ(a∧a∧)(1−cosθ)a∧a∧Isinθa∧(1−cosθ)(aaT−I)Isinθa∧aaT−I−cosθaaTcosθIIsinθa∧cosθI(1−cosθ)aaTsinθa∧​

于是得到李代数 ϕ \boldsymbol{\phi} ϕ 和旋转矩阵 R \boldsymbol{R} R 之间的映射关系即

R e ϕ ∧ cos ⁡ θ I ( 1 − cos ⁡ θ ) a a T sin ⁡ θ a ∧ (4-1-6) \boldsymbol{R}e^{\boldsymbol{\phi}^{\wedge}}\cos\theta\boldsymbol{I}(1-\cos\theta)\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}\sin\theta \boldsymbol{a}^{\wedge} \tag{4-1-6} Reϕ∧cosθI(1−cosθ)aaTsinθa∧(4-1-6)

也就是 罗德里格斯公式

CH4-2 SE(3) 上的指数映射

已知李代数 ξ [ ρ ϕ ] T ∈ R 6 \boldsymbol{\xi}[\rho \quad \phi]^{\mathrm{T}}\in \boldsymbol{\mathbb{R}}^6 ξ[ρϕ]T∈R6它的反对称矩阵为

ξ ∧ [ ϕ ∧ ρ 0 T 0 ] \boldsymbol{\xi}^{\wedge}\left[\begin{array}{c} \phi^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right] ξ∧[ϕ∧0T​ρ0​]

则李群为

T exp ⁡ ( ξ ∧ ) [ ∑ n 0 ∞ ( ϕ ∧ ) n n ! ∑ n 0 ∞ ( ϕ ∧ ) n ( n 1 ) ! ρ 0 T 0 ] ≜ [ R J ρ 0 T 1 ] (4-2-1) \begin{aligned} \boldsymbol{T}\exp(\boldsymbol{\xi}^{\wedge})&\left[\begin{array}{c} \sum_{n0}^{\infty}\frac{(\boldsymbol{\phi}^{\wedge})^n}{n!} & \sum_{n0}^{\infty}\frac{(\boldsymbol{\phi}^{\wedge})^n}{(n1)!}\rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right] \\ &\triangleq \left[\begin{array}{c} \boldsymbol{R} & \boldsymbol{J}\rho \\ \boldsymbol{0}^{\mathrm{T}} & 1 \end{array}\right] \end{aligned} \tag{4-2-1} Texp(ξ∧)​[∑n0∞​n!(ϕ∧)n​0T​∑n0∞​(n1)!(ϕ∧)n​ρ0​]≜[R0T​Jρ1​]​(4-2-1)

下面开始证明

同样假设 ϕ θ a \boldsymbol{\phi}\theta\boldsymbol{a} ϕθa θ \theta θ为模长 a \boldsymbol{a} a为单位方向向量。将 exp ⁡ ( ξ ∧ ) \exp(\boldsymbol{\xi}^{\wedge}) exp(ξ∧) 泰勒展开

exp ⁡ ( ξ ∧ ) 1 n ! ∑ n 0 ∞ [ ϕ ∧ ρ 0 T 0 ] n 1 n ! ∑ n 0 ∞ [ θ a ∧ ρ 0 T 0 ] n (4-2-2) \exp(\boldsymbol{\xi}^{\wedge})\frac{1}{n!}\sum_{n0}^{\infty}\left[\begin{array}{c} \phi^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]^n\frac{1}{n!}\sum_{n0}^{\infty}\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]^n \tag{4-2-2} exp(ξ∧)n!1​n0∑∞​[ϕ∧0T​ρ0​]nn!1​n0∑∞​[θa∧0T​ρ0​]n(4-2-2)

当 n 0 n0 n0 时

1 0 ! [ ϕ ∧ ρ 0 T 0 ] 0 I \frac{1}{0!}\left[\begin{array}{c} \phi^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]^0\boldsymbol{I} 0!1​[ϕ∧0T​ρ0​]0I

当 n 1 n1 n1 时

1 1 ! [ θ a ∧ ρ 0 T 0 ] 1 [ θ a ∧ ρ 0 T 0 ] \frac{1}{1!}\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]^1\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right] 1!1​[θa∧0T​ρ0​]1[θa∧0T​ρ0​]

当 n 2 n2 n2 时

1 2 ! [ θ a ∧ ρ 0 T 0 ] [ θ a ∧ ρ 0 T 0 ] [ ( θ a ∧ ) 2 θ a ∧ ρ 0 T 0 ] \frac{1}{2!}\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]\left[\begin{array}{c} (\theta\boldsymbol{a}^{\wedge})^2 & \theta\boldsymbol{a}^{\wedge}\rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right] 2!1​[θa∧0T​ρ0​][θa∧0T​ρ0​][(θa∧)20T​θa∧ρ0​]

当 n 3 n3 n3 时

1 3 ! [ θ a ∧ ρ 0 T 0 ] [ θ a ∧ ρ 0 T 0 ] [ θ a ∧ ρ 0 T 0 ] 1 3 ! [ ( θ a ∧ ) 3 ( θ a ∧ ) 2 ρ 0 T 0 ] \frac{1}{3!}\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]\frac{1}{3!}\left[\begin{array}{c} (\theta\boldsymbol{a}^{\wedge})^3 & (\theta\boldsymbol{a}^{\wedge})^2\rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right] 3!1​[θa∧0T​ρ0​][θa∧0T​ρ0​][θa∧0T​ρ0​]3!1​[(θa∧)30T​(θa∧)2ρ0​]

以此类推

1 n ! [ θ a ∧ ρ 0 T 0 ] n 1 n ! [ ( θ a ∧ ) n ( θ a ∧ ) n − 1 ρ 0 T 0 ] (4-2-3) \frac{1}{n!}\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]^n\frac{1}{n!}\left[\begin{array}{c} (\theta\boldsymbol{a}^{\wedge})^n & (\theta\boldsymbol{a}^{\wedge})^{n-1}\rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right] \tag{4-2-3} n!1​[θa∧0T​ρ0​]nn!1​[(θa∧)n0T​(θa∧)n−1ρ0​](4-2-3)

那么式4-1-8可化为

exp ⁡ ( ξ ∧ ) 1 n ! ∑ n 0 ∞ [ ϕ ∧ ρ 0 T 0 ] n I [ θ a ∧ ρ 0 T 0 ] [ ( θ a ∧ ) 2 θ a ∧ ρ 0 T 0 ] . . . 1 n ! [ ( θ a ∧ ) n ( θ a ∧ ) n − 1 ρ 0 T 0 ] [ ∑ n 0 ∞ 1 n ! ( θ a ∧ ) n ∑ n 0 ∞ 1 ( n 1 ) ! ( θ a ∧ ) n ρ 0 T 1 ] (4-2-4) \begin{aligned} \exp(\boldsymbol{\xi}^{\wedge})&\frac{1}{n!}\sum_{n0}^{\infty}\left[\begin{array}{c} \phi^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]^n \\ &\boldsymbol{I}\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]\left[\begin{array}{c} (\theta\boldsymbol{a}^{\wedge})^2 & \theta\boldsymbol{a}^{\wedge}\rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]...\frac{1}{n!}\left[\begin{array}{c} (\theta\boldsymbol{a}^{\wedge})^n & (\theta\boldsymbol{a}^{\wedge})^{n-1}\rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]\\ &\left[\begin{array}{c} \sum_{n0}^{\infty}\frac{1}{n!}(\theta\boldsymbol{a}^{\wedge})^n & \sum_{n0}^{\infty}\frac{1}{(n1)!}(\theta\boldsymbol{a}^{\wedge})^n\rho \\ \boldsymbol{0}^{\mathrm{T}} & 1 \end{array}\right] \tag{4-2-4} \end{aligned} exp(ξ∧)​n!1​n0∑∞​[ϕ∧0T​ρ0​]nI[θa∧0T​ρ0​][(θa∧)20T​θa∧ρ0​]...n!1​[(θa∧)n0T​(θa∧)n−1ρ0​][∑n0∞​n!1​(θa∧)n0T​∑n0∞​(n1)!1​(θa∧)nρ1​]​(4-2-4)

其中左上角为 S O ( 3 ) SO(3) SO(3) 指数映射前面已经证明。令

J ∑ n 0 ∞ 1 ( n 1 ) ! ( θ a ∧ ) n I 1 2 ! θ a ∧ 1 3 ! ( θ a ∧ ) 2 1 4 ! ( θ a ∧ ) 3 1 5 ! ( θ a ∧ ) 4 1 θ ( 1 2 ! θ 2 − 1 4 ! θ 4 . . . ) a ∧ 1 θ ( 1 3 ! θ 3 − 1 5 ! θ 5 . . . ) ( a ∧ ) 2 I 1 − cos ⁡ θ θ a ∧ θ − sin ⁡ θ θ ( a ∧ ) 2 I 1 − cos ⁡ θ θ a ∧ ( 1 − sin ⁡ θ θ ) ( a a T − I ) I 1 − cos ⁡ θ θ a ∧ ( 1 − sin ⁡ θ θ ) a a T − I sin ⁡ θ θ I I sin ⁡ θ θ I ( 1 − sin ⁡ θ θ ) a a T 1 − cos ⁡ θ θ a ∧ (4-2-5) \begin{aligned} \boldsymbol{J}&\sum_{n0}^{\infty}\frac{1}{(n1)!}(\theta\boldsymbol{a}^{\wedge})^n \\ &\boldsymbol{I}\frac{1}{2!}\theta\boldsymbol{a}^{\wedge}\frac{1}{3!}(\theta\boldsymbol{a}^{\wedge})^2\frac{1}{4!}(\theta\boldsymbol{a}^{\wedge})^3\frac{1}{5!}(\theta\boldsymbol{a}^{\wedge})^4 \\ &\frac{1}{\theta}(\frac{1}{2!}\theta^2-\frac{1}{4!}\theta^4...)\boldsymbol{a}^{\wedge}\frac{1}{\theta}(\frac{1}{3!}\theta^3-\frac{1}{5!}\theta^5...)(\boldsymbol{a}^{\wedge})^2\boldsymbol{I} \\ &\frac{1-\cos\theta}{\theta}\boldsymbol{a}^{\wedge}\frac{\theta-\sin\theta}{\theta}(\boldsymbol{a}^{\wedge})^2\boldsymbol{I}\\ &\frac{1-\cos\theta}{\theta}\boldsymbol{a}^{\wedge}(1-\frac{\sin\theta}{\theta})(\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}-\boldsymbol{I})\boldsymbol{I}\\ &\frac{1-\cos\theta}{\theta}\boldsymbol{a}^{\wedge}(1-\frac{\sin\theta}{\theta})\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}-\boldsymbol{I}\frac{\sin\theta}{\theta}\boldsymbol{I}\boldsymbol{I}\\ &\frac{\sin\theta}{\theta}\boldsymbol{I}(1-\frac{\sin\theta}{\theta})\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}\frac{1-\cos\theta}{\theta}\boldsymbol{a}^{\wedge} \tag{4-2-5} \end{aligned} J​n0∑∞​(n1)!1​(θa∧)nI2!1​θa∧3!1​(θa∧)24!1​(θa∧)35!1​(θa∧)4θ1​(2!1​θ2−4!1​θ4...)a∧θ1​(3!1​θ3−5!1​θ5...)(a∧)2Iθ1−cosθ​a∧θθ−sinθ​(a∧)2Iθ1−cosθ​a∧(1−θsinθ​)(aaT−I)Iθ1−cosθ​a∧(1−θsinθ​)aaT−Iθsinθ​IIθsinθ​I(1−θsinθ​)aaTθ1−cosθ​a∧​(4-2-5)

注意这里用到式4-1-5 ( a ∧ ) 3 − a ∧ (\boldsymbol{a}^{\wedge})^3-\boldsymbol{a}^{\wedge} (a∧)3−a∧ 和 a a T − I a ∧ a ∧ \boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}-\boldsymbol{I}\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge} aaT−Ia∧a∧ 以及泰勒展开

cos ⁡ θ 1 − 1 2 ! θ 2 1 4 ! θ 4 . . . \cos\theta1-\frac{1}{2!}\theta^2\frac{1}{4!}\theta^4... cosθ1−2!1​θ24!1​θ4...

sin ⁡ θ θ − 1 3 ! θ 3 1 5 ! θ 5 . . . \sin\theta\theta-\frac{1}{3!}\theta^3\frac{1}{5!}\theta^5... sinθθ−3!1​θ35!1​θ5...

综上证毕。

CH4-3 李代数求导

一、1 S O ( 3 ) \mathrm{SO(3)} SO(3) 直接求导

对极几何本质矩阵奇异值分解 矩阵内积和迹

矩阵具有 弗罗比尼乌斯内积类似向量的内积。它被定义为两个相同大小的矩阵 A \boldsymbol{A} A 和 B \boldsymbol{B} B 的对应元素的积的和 即

< A , B > ∑ i 1 n ∑ j 1 n a i j b i j <\boldsymbol{A},\boldsymbol{B}>\sum_{i1}^{n}\sum_{j1}^na_{ij}b_{ij} <A,B>i1∑n​j1∑n​aij​bij​

以 3 × 3 3\times 3 3×3 矩阵为例设

A [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] B [ b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33 ] \boldsymbol{A}\left[\begin{array}{c} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right] \boldsymbol{B}\left[\begin{array}{c} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{array}\right] A ​a11​a21​a31​​a12​a22​a32​​a13​a23​a33​​ ​B ​b11​b21​b31​​b12​b22​b32​​b13​b23​b33​​ ​

则有

< A , B > ∑ i 1 n ∑ j 1 n a i j b i j <\boldsymbol{A},\boldsymbol{B}>\sum_{i1}^{n}\sum_{j1}^na_{ij}b_{ij} <A,B>i1∑n​j1∑n​aij​bij​

对于 A T B \boldsymbol{A}^{\mathrm{T}}\boldsymbol{B} ATB

A T B [ a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 ] [ b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33 ] [ a 11 b 11 a 21 b 21 a 31 b 31 ? ? ? a 12 b 12 a 22 b 22 a 32 b 32 ? ? ? a 13 b 13 a 23 b 23 a 33 b 33 ] \boldsymbol{A}^{\mathrm{T}}\boldsymbol{B}\left[\begin{array}{c} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{array}\right] \left[\begin{array}{c} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{array}\right] \left[\begin{array}{c} a_{11}b_{11}a_{21}b_{21}a_{31}b_{31} & ? & ? \\ ? & a_{12}b_{12}a_{22}b_{22}a_{32}b_{32} & ? \\ ? & ? & a_{13}b_{13}a_{23}b_{23}a_{33}b_{33} \end{array}\right] ATB ​a11​a12​a13​​a21​a22​a23​​a31​a32​a33​​ ​ ​b11​b21​b31​​b12​b22​b32​​b13​b23​b33​​ ​ ​a11​b11​a21​b21​a31​b31​??​?a12​b12​a22​b22​a32​b32​?​??a13​b13​a23​b23​a33​b33​​ ​

则 T r ( A T B ) \mathrm{Tr}(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{B}) Tr(ATB)等于

T r ( A T B ) a 11 b 11 a 21 b 21 a 31 b 31 a 12 b 12 a 22 b 22 a 32 b 32 a 13 b 13 a 23 b 23 a 33 b 33 ∑ i 1 n ∑ j 1 n a i j b i j \mathrm{Tr}(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{B})a_{11}b_{11}a_{21}b_{21}a_{31}b_{31}a_{12}b_{12}a_{22}b_{22}a_{32}b_{32}a_{13}b_{13}a_{23}b_{23}a_{33}b_{33}\sum_{i1}^{n}\sum_{j1}^na_{ij}b_{ij} Tr(ATB)a11​b11​a21​b21​a31​b31​a12​b12​a22​b22​a32​b32​a13​b13​a23​b23​a33​b33​i1∑n​j1∑n​aij​bij​

也就是说 A T B \boldsymbol{A}^{\mathrm{T}}\boldsymbol{B} ATB 的迹等于两矩阵对应元素相乘的积的和。

标签:
声明:无特别说明,转载请标明本文来源!